
kx
Technical Whitepaper

Migrating a kdb+ HDB to Amazon EC2

Date March 2018

Author Glenn Wright, Systems Architect, Kx Systems, has 30+
years of experience within the high-performance
computing industry. He has worked for several software
and systems vendors where he has focused on the
architecture, design and implementation of extreme
performance solutions. At Kx, Glenn supports partners
and solutions vendors to further exploit the industry-
leading performance and enterprise aspects of kdb+.

Contents

Migrating a kdb+ HDB to Amazon EC2 .. 3
In-house vs EC2 .. 5
Historical data layouts and performance testing ... 10
Data locality .. 12
Getting your data into EC2 .. 13
Security of your data and secure access ... 15
Getting your data out of EC2 ... 17
Storing your HDB in S3 .. 18
Disaster recovery .. 23
Licensing kdb+ in the Cloud ... 24
Encryption ... 25
Benchmarking methodology ... 26
Observations from kdb+ testing ... 33
Network configuration ... 36
Appendix A - Elastic Block Store (EBS) ... 37
Appendix B – EFS (NFS) .. 46
Appendix C – Amazon Storage Gateway (File mode) 49
Appendix D – MapR-FS ... 51
Appendix E - Goofys ... 55
Appendix F - S3FS .. 57
Appendix G - S3QL ... 58
Appendix H - ObjectiveFS ... 59
Appendix I – WekaIO Matrix .. 63
Appendix J – Quobyte .. 68

2

Migrating a kdb+ HDB to Amazon EC2 kx

Migrating a kdb+ HDB to Amazon EC2

Kx has an ongoing project of evaluating different cloud technologies to see how they
interact with kdb+. If you are assessing migrating a kdb+ historical database (HDB)
and analytics workloads into the Amazon Elastic Compute Cloud1 (EC2), here are
key considerations:

• performance and functionality attributes expected from using kdb+, and the
associated HDB, in EC2

• capabilities of several storage solutions working in the EC2 environment, as of March
2018

• performance attributes of EC2, and benchmark results

You must weigh the pros and cons of each solution. The key issues of each approach
are discussed in the Appendices. We highlight specific functional constraints of each
solution.

We cover some of the in-house solutions supplied by Amazon Web Services (AWS),
as well as a selection of some of the third-party solutions sold and supported for EC2,
and a few open-source products. Most of these solutions are freely available for building
and testing using Amazon Machine Images (AMI) found within the Amazon
Marketplace.

Why Amazon EC2?
Gartner2, and other sources such as Synergy Research3, rank cloud-services providers:

1. Amazon Web Services

2. Google Cloud Platform

3. Microsoft Azure

This is partly due to the fact that Amazon was first to market, and partly because of
their strong global data-center presence and rich sets of APIs and tools.

Amazon EC2 is one of many services available to AWS users, and is managed via the
AWS console. EC2 is typically used to host public estates of Web and mobile-based
applications. Many of these are ubiquitous and familiar to the public. EC2 forms a

1. https://aws.amazon.com/ec2/

2. http://fortune.com/2017/06/15/gartner-cloud-rankings/

3. https://www.srgresearch.com/articles/microsoft-google-and-ibm-charge-public-cloud-expense-smaller-providers

3

Migrating a kdb+ HDB to Amazon EC2 kx

https://aws.amazon.com/ec2/
http://fortune.com/2017/06/15/gartner-cloud-rankings/
https://www.srgresearch.com/articles/microsoft-google-and-ibm-charge-public-cloud-expense-smaller-providers

significant part of the ‘Web 2.0/Semantic Web’ applications available for mobile and
desktop computing.

Kdb+ is a high-performance technology. It is often assumed the Cloud cannot provide
a level of performance, storage and memory access commensurate with dedicated or
custom hardware implementations. Porting to EC2 requires careful assessment of the
functional performance constraints both in EC2 compute and in the supporting storage
layers.

Kdb+ users are sensitive to database performance. Many have significant amounts of
market data – sometimes hundreds of petabytes – hosted in data centers. Understanding
the issues is critical to a successful migration.

Consider the following scenarios:

• Your internal IT data services team is moving from an in-house data center to a
cloud-services offering. This could be in order to move the IT costs of the internal
data center from a capital expense line to an operating expense line.

• You need your data analytics processing and/or storage capacity to be scaled up
instantly, on-demand, and without the need to provide extra hardware in your own
data center.

• You believe the Cloud may be ideal for burst processing of your compute load. For
example, you may need to run 100s of cores for just 30 minutes in a day for a specific
risk-calculation workload.

• Your quants and developers might want to work on kdb+, but only for a few hours
in the day during the work week, a suitable model for an on-demand or a spot-pricing
service.

• You want to drive warm backups of data from in-house to EC2, or across
instances/regions in EC2 – spun up for backups, then shut down.

• Development/UAT/Prod life-cycles can be hosted on their own instances and then
spun down after each phase finishes. Small memory/core instances can cost less
and can be increased or decreased on demand.

Hosting both the compute workload and the historical market data on EC2 can achieve
the best of both worlds:

• reduce overall costs for hosting the market data pool

• flex to the desired performance levels

As long as the speed of deployment and ease of use is coupled with similar or good
enough runtime performance, EC2 can be a serious contender for hosting your market
data.

4

Migrating a kdb+ HDB to Amazon EC2 kx

In-house vs EC2

Kdb+ is used to support

• real-time data analytics

• streaming data analytics

• historical data analytics

The historical database in a kdb+ solution is typically kept on a non-volatile persistent
storage medium (a.k.a. disks). In financial services this data is kept for research (quant
analytics or back-testing), algorithmic trading and for regulatory and compliance
requirements.

 Low latency and the Cloud

In the current state of cloud infrastructure, Kx does not recommend keeping the
high-performance, low-latency part of market data – or streaming data collection – applications
in the Cloud.

When speed translates to competitive advantage, using AWS (or cloud in general) needs to be
considered carefully.

Carefully-architected cloud solutions are acceptable for parts of the application that
are removed from from the cutting-edge performance and data-capture requirements
often imposed on kdb+. For example, using parallel transfers with a proven simple
technology such as rsync, that can take advantage of the kdb+ data structures (distinct
columns that can safely be transferred in parallel) and the innate compressibility of
some of the data types to transfer data to historical storage in a cloud environment at
end of day.

Storage and management of historical data can be a non-trivial undertaking for many
organizations:

• capital and running costs

• overhead of maintaining security policies

• roles and technologies required

• planning for data growth and disaster recovery

AWS uses tried-and-tested infrastructure, which includes excellent policies and
processes for handling such production issues.

5

Migrating a kdb+ HDB to Amazon EC2 kx

Before we get to the analysis of the storage options, it is important to take a quick look
at the performance you might expect from compute and memory in your EC2 instances.

CPU cores
We assume you require the same number of cores and memory quantities as you use
on your in-house bare-metal servers. The chipset used by the instance of your choice
will list the number of cores offered by that instance. The definition used by AWS to
describe cores is vCPUs. It is important to note that with very few exceptions, the
vCPU represents a hyper-threaded core, not a physical core. This is normally run at
a ratio of 2 hyper-threaded cores to one physical core. There is no easy way to eliminate
this setting. Some of the very large instances do deploy on two sockets. For example,
r4.16xlarge uses two sockets.

If your sizing calculations depend on getting one q process to run only on one physical
core and not share itself with other q processes, or threads, you need to either

• use CPU binding on q execution

• invalidate the execution on even, or odd, core counts

Or you can run on instances that have more vCPUs than there will be instances
running. For the purposes of these benchmarks, we have focused our testing on single
socket instances, with a limit of 16 vCPUs, meaning eight physical cores, thus:

[centos@nano-client1 ~]$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 16
On-line CPU(s) list: 0-15
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 79
Model name: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz

System memory
Memory sizes vary by the instance chosen.

6

Migrating a kdb+ HDB to Amazon EC2 kx

Memory lost to hypervisor

Memory is reduced from the nominal ‘power of two’ RAM sizing, as some is set aside for the
Xen hypervisor. For example, a nominal 128 GB of RAM gets sized to approximately 120 GB.

Take account of this in your memory sizing exercises.

Compute and memory performance
For CPU and memory, the EC2 performance matches that seen on physical systems,
when correlated to the memory specifications. So the default HVM mode of an AMI
under Xen seems to work efficiently when compared to a native/physical server.

There is one caveat to this, in testing kdb+ list creation speeds we observe a degradation
of memory list creation times when the number of q processes running exceeds the
number of vCPUs in the virtual machine. This is because the vCPU in EC2 is actually
a single hyperthreaded core, and not a physical core. In this example, we see
competition on the physical cores. For a 16 vCPU instance we notice this only when
running above 8 q processes:

Megabytes and mebibytes

Throughout this paper, MB and GB are used to refer to MiBytes4 and GiBytes respectively.

4. https://en.wikipedia.org/wiki/Mebibyte

7

Migrating a kdb+ HDB to Amazon EC2 kx

https://en.wikipedia.org/wiki/Mebibyte

Network and storage performance
As expected, we see more noticeable performance variations with the aspects of the
system that are virtualized and shared in EC2, especially those which in principle are
shared amongst others on the platform. For kdb+ users, the storage (I/O) and the
networking access are virtualized/shared, being separated from the bare metal by the
Xen hypervisor. Most of the AMIs deployed into EC2 today are based on the Hardware
Virtual Machine layer (HVM). It seems that in recent instantiations of HVM, the
performance for I/O aspects of the guest have improved. For the best performance,
AWS recommends current-generation instance types and HVM AMIs when you launch
your instances. Any storage solution that hosts historical market data must:

• support the Linux-hosted POSIX file system5 interfaces

• offer suitable performance for streaming and random I/O mapped read rates

• offer acceptable performance for random-region reads of a table (splayed) columns,
constituting large record reads from random regions of the file

These aspects, and inspection of metadata performance, are summarized in the tests.
The term metadata is used to refer to file operations such as listing files in a directory,
gathering file size of a file, appending, finding modification dates, and so on.

Using Amazon S3 as a data store

Because kdb+ does not directly support the use of an object store for its stored data, it cannot
support direct use of an object-store model such as the Amazon S3. If you wish to use Amazon
S3 as a data store, kdb+ historical data must be hosted on a POSIX-based file system layer
fronting S3.

Several solutions offer a POSIX interface layered over an underlying S3 storage bucket. These
can be included alongside native file-system support that can also be hosted on EC2.

Although EC2 offers both physical systems and virtual systems within the Elastic
Cloud, it is most likely customers will opt for a virtualized environment. There is also
a choice in EC2 between spot pricing of an EC2, and deployed virtual instances. We
focus here on the attribute and results achieved with the deployed virtual instance
model. These are represented by instances that are tested in one availability zone and
one placement group.

A placement group is a logical grouping of instances within a single availability zone.
Nodes in a placement group should gain better network latency figures when compared
to nodes scattered anywhere within an availability zone. Think of this as placement
subnets or racks with a data center, as opposed to the datacenter itself. All of our tests
use one placement group, unless otherwise stated.

5. https://en.wikipedia.org/wiki/POSIX

8

Migrating a kdb+ HDB to Amazon EC2 kx

https://en.wikipedia.org/wiki/POSIX

Kdb+ is supported on most mainstream Linux distributions, and by extension we
support standard Linux distributions deployed under the AWS model.

Testing within this report was carried out typically on CentOS 7.3 or 7.4 distributions,
but all other mainstream Linux distributions are expected to work equally well, with
no noticeable performance differences seen in spot testing on RHEL, Ubuntu and
SuSe running on EC2.

Does kdb+ work in the same way under EC2?
Yes – mostly.

When porting or hosting the HDB data to EC2, we expect our customers to:

1. Use one of the many POSIX-based file systems solutions available under EC2.

2. Use (partly or fully) the lower-cost object storage via a POSIX or POSIX-like access
method.

3. Not store the historical data on Hadoop HDFS file systems.

If kdb+ runs alongside one of the solutions reviewed here, your HDB will function
identically to any internally-hosted, bare-metal system. You can use this report as
input to determine the performance and the relative costs for an HDB solution on
EC2.

9

Migrating a kdb+ HDB to Amazon EC2 kx

Historical data layouts and performance testing

The typical kdb+ database layout for a stock tick-based system is partitioned by date,
although integer partitioning is also possible. Partitioning allows for quicker lookup
and increases the ability to parallelize queries. Kdb+ splays in-memory table spaces
into representative directories and files for long-term retention. Here is an example
of an on-disk layout for quote and trade tables, with date partitions:

On-disk layout for quote and trade tables with date partitions

Usually, updates to the HDB are made by writing today’s or the last day’s in-memory
columns of data to a new HDB partition. Q programmers can use a utility built into

10

Migrating a kdb+ HDB to Amazon EC2 kx

q for this which creates the files and directories organized as in the table above. Kdb+
requires the support of a POSIX-compliant file system in order to access and process
HDB data.

Kdb+ maps the entire HDB into the runtime address space of kdb+. This means the
Linux kernel is responsible for fetching HDB data. If, for example, you are expecting
a query that scans an entire day’s trade price for a specific stock symbol range, the file
system will load this data into the host memory as required. So, for porting this to
EC2, if you expect it to match the performance you see on your in-house infrastructure
you will need to look into the timing differences between this and EC2.

Our testing measured the time to load and unload data from arrays, ignoring the
details of structuring columns, partitions and segments – we focused on just the raw
throughput measurements.

All of these measurements will directly correlate to the final operational latencies for
your full analytics use-case, written in q. In other words, if a solution reported here
shows throughput of 100 MB/sec for solution A, and shows 200 MB/sec for solution
B, this will reflect the difference in time to complete the data fetch from backing store.
Of course, as with any solution, you get what you pay for, but the interesting question
is: how much more could you get within the constraints of one solution?

To give an example: assuming a retrieval on solution A takes 50 ms for a query
comprised of 10 ms to compute against the data, and 40 ms to fetch the data, with half
the throughput rates, it might take 90 ms (10+80) to complete on solution B. Variations
may be seen depending on metadata and random read values.

This is especially important for solutions that use networked file systems to access a
single namespace that contains your HDB. This may well exhibit a significantly
different behavior when run at scale.

11

Migrating a kdb+ HDB to Amazon EC2 kx

Data locality

Data locality is the basic architectural decision.

You will get the best storage performance in EC2 by localizing the data to be as close
to the compute workload as is possible.

EC2 is divided into various zones. Compute, storage and support software can all be
placed in pre-defined availability zones. Typically these reflect the timezone location
of the data center, as well as a further subdivision into a physical instance of the data
center within one region or time zone. Kdb+ will achieve the lowest latency and
highest bandwidth in the network by using nodes and storage hosted in the same
availability zone.

12

Migrating a kdb+ HDB to Amazon EC2 kx

Getting your data into EC2

Let’s suppose you already have a lot of data for your historical database (HDB). You
will need to know the achievable bandwidth for data loading, and note that you will
be charged by the amount of data ingested. The mechanics of loading a large data set
from your data center which hosts the HDB into EC2 involves the use of at least one
of the two methods described below.

EC2 Virtual Private Cloud
We would expect kdb+ customers to use the EC2 Virtual Private Cloud (VPC) network
structure. Within the VPC you can use either an anonymous IP address, using EC2
DHCP address ranges, or a permanently-allocated IP address range. The anonymous
DHCP IP address range is free of charge. Typically you would deploy both the front
and backend domains (subnets) within the same VPC, provisioned and associated
with each new instance in EC2. Typically, an entire VPC allocates an entire class-C
subnet. You may provision up to 200 class-C subnets in EC2, as one account. Public
IP addresses are reachable from the internet and are either dynamically allocated on
start, or use the same pre-defined elastic IP address on each start of the instance.

Private IP addresses refer to the locally defined IP addresses only visible to your cluster
(e.g. the front/backend in diagram below). Private IP addresses are retained by that
instance until the instance is terminated. Public access may be direct to either of these
domains, or you may prefer to set up a classic ‘ ‘demilitarized zone’ ’ for kdb+ access.

An elastic IP address is usually your public IPv4 address, known to your
quants/users/applications, and is reachable from the Internet and registered
permanently in DNS, until you terminate the instance or elastic IP. AWS has added
support for IPv6 in most of their regions. An elastic IP address can mask the failure
of an instance or software by remapping the address to another instance in your estate.
That is handy for things such as GUIs and dashboards, though you should be aware
of this capability and use it. You are charged for the elastic IP address if you close
down the instance associated with it, otherwise one IP address is free when associated.
As of January 2018 the cost is, $0.12 per Elastic IP address/day when not associated
with a running instance. Additional IP addresses per instance are charged.

Ingesting data can be via the public/elastic IP address. In this case, routing to that
connection is via undefined routers. The ingest rate to this instance using this elastic
IP address would depend on the availability zone chosen. But in all cases, this would
be a shared pubic routed IP model, so transfer rates may be outside your control.

13

Migrating a kdb+ HDB to Amazon EC2 kx

In theory this uses publicly routed connections, so you may wish to consider encryption
of the data over the wire, prior to decryption.

Direct Connect
Direct Connect is a dedicated network connection between an access point to your
existing IP network and one of the AWS Direct Connect locations. This is a dedicated
physical connection offered as a VLAN, using industry standard 802.1q VLAN protocol.
You can use AWS Direct Connect instead of establishing your own VPN connection
over the internet to VPC. Specifically, it can connect through to a VPC domain using
a private IP space. It also gives a dedicated service level for bandwidth. There is an
additional charge for this service.

14

Migrating a kdb+ HDB to Amazon EC2 kx

Security of your data and secure access

By the very nature of the EC2 application machine image model (AMI), there are tight
security models put in place, and you would have to work very hard in order to remove
these.

The following diagram is a typical scenario for authenticating access to kdb+ and
restricting networking access. The frontend and backend private subnets are
provisioned by default with one Virtual Private Cloud (VPC) managed by EC2.
Typically, this allocates an entire class-C subnet. You may provision up to 200 class-C
subnets in EC2. The public access may be direct to either of these domains, or you
may prefer to setup a classic ‘demilitarized zone’ :

Typical scenario for authenticating access

Amazon has spent a lot of time developing security features for EC27. Some key security
attributes to consider are:

• A newly-provisioned node comes from a tried and trusted build image, for example,
one found in the AWS Marketplace

• The Amazon Linux AMI Security Center provides patch and fix lists, and these can
be automatically inlaid by the AMI. The Amazon Linux AMI is a supported and
maintained Linux image provided by AWS for use on EC2.

• Encryption at rest is offered by many of the storage interfaces covered in this report.

7. https://aws.amazon.com/security/

15

Migrating a kdb+ HDB to Amazon EC2 kx

https://aws.amazon.com/security/

 Amazon Security8

8. https://aws.amazon.com/blogs/security/

16

Migrating a kdb+ HDB to Amazon EC2 kx

https://aws.amazon.com/blogs/security/

Getting your data out of EC2

Storing billions and billions of records under kdb+ in EC2 is easily achievable. Pushing
the data into EC2 can be easily done and in doing so incurs no data transfer charges
from AWS. But AWS will charge you to extract this information from EC2. For example,
network charges may apply if you wish to extract data to place into other visualization
tools/GUIs, outside the domain of kdb+ toolsets.

Replication
Or you may be replicating data from one region or availability zone, to another. For
this, there is a cost involved. At time of writing, the charges are $.09/GB ($92/TB), or
$94,200 for 1 PB transferred out to the Internet via EC2 public IP addresses. That is
raw throughput measurements, not the raw GBs of kdb+ columnar data itself. This
is billed by AWS at a pro-rated monthly rate. The rate declines as the amount of data
transferred increases. This rate also applies for all general traffic over a VPN to your
own data center. Note that normal Internet connections carry no specific service-level
agreements for bandwidth.

Network Direct
If you use the Network Direct option from EC2, you get a dedicated network with
guaranteed bandwidth. You then pay for the dedicated link, plus the same outbound
data transfer rates. For example, as of January 2018 the standard charge for a dedicated
1 GB/sec link to EC2 would cost $220/month plus $90/month for a transfer fee per
TB.

Consider these costs when planning to replicate HDB data between regions, and when
exporting your data continually back to your own data center for visualization or other
purposes. Consider the migration of these tools to coexist with kdb+ in the AWS estate,
and if you do not, consider the time to export the data.

17

Migrating a kdb+ HDB to Amazon EC2 kx

Storing your HDB in S3

S3 might be something you are seriously considering for storage of some, or all, of
your HDB data in EC2. Here is how S3 fits into the landscape of all of the storage
options in EC2.

Locally-attached drives
You can store your HDB on locally-attached drives, as you might do today on your
own physical hardware on your own premises.

EC2 offers the capability of bringing up an instance with internal NVMe or SAS/SATA
disk drives, although this is not expected to be used for anything other than caching
data, as this storage is referred to as ephemeral data by AWS, and might not persist
after system shutdowns. This is due to the on-demand nature of the compute instances:
they could be instantiated on any available hardware within the availability zone
selected by your instance configuration.

EBS volumes
You can store your HDB on EBS volumes9. These appear like persistent block-level
storage. Because the EC2 instances are virtualized, the storage is separated at birth
from all compute instances.

By doing this, it allows you to start instances on demand, without the need to co-locate
the HDB data alongside those nodes. This separation is always via the networking
infrastructure built into EC2. In other words, your virtualized compute instance can
be attached to a real physical instance of the storage via the EC2 network, and thereafter
appears as block storage. This is referred to as network attached storage (Elastic Block
Storage).

Alternatively, you can place the files on a remote independent file system, which in
turn is typically supported by EC2 instances stored on EBS or S3.

Amazon S3 object store
Finally, there is the ubiquitous Amazon S3 object store, available in all regions and
zones of EC2. Amazon uses S3 to run its own global network of websites, and many
high-visibility web-based services store their key data under S3. With S3 you can create
and deploy your HDB data in buckets of S3 objects.

9. http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html

18

Migrating a kdb+ HDB to Amazon EC2 kx

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html

• Storage prices are lower (as of January 2018): typically 10% of the costs of the Amazon
EBS model.

• S3 can be configured to offer redundancy and replication of object data, regionally
and globally.

Amazon can be configured to duplicate your uploaded data across multiple
geographically diverse repositories, according to the replication service selected at
bucket-creation time. S3 promises 99.999999999%10 durability.

 AWS S3 replication11

However, there are severe limitations on using S3 when it comes to kdb+. The main
limitation is the API.

API limitations

An S3 object store is organized differently from a POSIX file system.

S3 uses a web-style RESTful interface13 HTTP-style interface with eventual-
consistency14 semantics of put and change. This will always represent an additional
level of abstraction for an application like kdb+ that directly manages its virtual
memory. S3 therefore exhibits slower per–process/thread performance than is usual
for kdb+. The lack of POSIX interface and the semantics of RESTful interfaces prevents
kdb+ and other high-performance databases from using S3 directly.

10. https://aws.amazon.com/s3/faqs/

11. https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html

13. https://en.m.wikipedia.org/wiki/Representational_state_transfer

14. https://en.wikipedia.org/wiki/Eventual_consistency

19

Migrating a kdb+ HDB to Amazon EC2 kx

https://aws.amazon.com/s3/faqs/
https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html
https://en.m.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/Eventual_consistency

However, S3’s low cost, and its ability to scale performance horizontally when
additional kdb+ instances use the same S3 buckets, make it a candidate for some
customers.

Performance limitations

The second limitation is S3’s performance, as measured by the time taken to populate
vectors in memory.

Kdb+ uses POSIX file-system semantics to manage HDB structure directly on disk.
It exploits this feature to gain very high-performance memory management through
Linux-based memory mapping functions built into the kernel, from the very inception
of Linux.

S3 uses none of this.

On EC2, kdb+ performance stacks up in this order (from slowest to faster):

1. S3

2. EBS

3. Third-party distributed or managed file system

4. Local drives to the instance (typically cache only)

Although the performance of S3 as measured from one node is not fast, S3 retains
comparative performance for each new instance added to an HDB workload in each
availability zone. Because of this, S3 can scale up its throughput when used across
multiple nodes within one availability zone. This is useful if you are positioning large
numbers of business functions against common sets of market data, or if you are
widely distributing the workload of a single set of business queries. This is not so for
EBS as, when deployed, the storage becomes owned by one, and only one, instance
at a time.

Replication limitations

A nice feature of S3 is its built-in replication model between regions and/or time zones.

Note you have to choose a replication option; none is chosen by default.

The replication process may well duplicate incorrect behavior from one region to
another. In other words, this is not a backup.

However, the data at the replica site can be used for production purposes, if required.
Replication is only for cross-region propagation (e.g. US-East to US-West). But, given
that the kdb+ user can design this into the solution (i.e. end-of-day copies to replica
sites, or multiple pub-sub systems), you may choose to deploy a custom solution within
kdb+, across region, rather than relying on S3 or the file system itself.

20

Migrating a kdb+ HDB to Amazon EC2 kx

Summary

• The POSIX file system interface allows the Linux kernel to move data from the blocks
of the underlying physical hardware, directly into memory mapped space of the user
process. This concept has been tuned and honed by over 20 years of Linux kernel
refinement. In our case, the recipient user process is kdb+. S3, by comparison,
requires the application to bind to an HTTP-based RESTful (get, wait, receive)
protocol, which is typically transferred over TCP/IP LAN or WAN connection.
Clearly, this is not directly suitable for a high-performance in-memory analytics
engine such as kdb+. However, all of the file-system plug-ins and middleware
packages reviewed in this paper help mitigate this issue. The appendices list the
main comparisons of all of the reviewed solutions.

• Neither Kdb+, nor any other high-performance database, makes use of the RESTful
object-store interface.

• There is no notion of vectors, lists, memory mapping or optimized placement of objects
in memory regions.

• S3 employs an eventual-consistency model, meaning there is no guaranteed service
time for placement of the object, or replication of the object, for access by other
processes or threads.

• S3 exhibits relatively low streaming-read performance. A RESTful, single S3 reader
process is limited to a read throughput15 of circa 0.07 GB/sec. Some of the solutions
reviewed in this paper use strategies to improve these numbers within one instance
(e.g. raising that figure to the 100s MB/sec – GB/sec range). There is also throughput
scalability gained by reading the same bucket across multiple nodes. There is no
theoretical limit on this bandwidth, but this has not been exhaustively tested by Kx.

• Certain metadata operations, such as kdb+’s append function, cause significant
latency vs that observed on EBS or local attached storage, and your mileage depends
on the file system under review.

Performance enhancements, some of which are bundled into third-party solutions
that layer between S3 and the POSIX file system layer, are based around a combination
of: multithreading read requests to the S3 bucket; separation of large sequential regions
of a file into individual objects within the bucket and read-ahead and caching strategies.

There are some areas of synergy. Kdb+ HDB data typically stores billions and billions
of time-series entries in an immutable read-only mode. Only updated new data that
lands in the HDB needs to be written. S3 is a shared nothing16 model. Therefore,
splitting a single segment or partitioned column of data into one file, which in turn
is segmented into a few objects of say 1 MB, should be a lightweight operation, as

15. http://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html

16. https://en.wikipedia.org/wiki/Shared-nothing_architecture

21

Migrating a kdb+ HDB to Amazon EC2 kx

http://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html
https://en.wikipedia.org/wiki/Shared-nothing_architecture

there is no shared/locking required for previously written HDB data. So the HDB can
easily tolerate this eventual consistency model. This does not apply to all use-cases
for kdb+. For example, S3, with or without a file system layer, cannot be used to store
a reliable ticker-plant log.

Where S3 definitely plays to its strengths, is that it can be considered for an off-line
deep archive of your kdb+ formatted market data.

Kx does not make recommendations with respect to the merits, or otherwise, of storing
kdb+ HDB market data in a data retention type ‘WORM’ model, as required by the
regulations SEC 17-a417.

17. https://en.wikipedia.org/wiki/SEC_Rule_17a-4

22

Migrating a kdb+ HDB to Amazon EC2 kx

https://en.wikipedia.org/wiki/SEC_Rule_17a-4

Disaster recovery

In addition to EC2’s built-in disaster-recovery features, when you use kdb+ on EC2,
your disaster recovery process is eased by kdb+’s simple, elegant design.

Kdb+ databases are stored as a series of files and directories on disk. This makes
administering databases extremely easy because database files can be manipulated as
operating-system files. Backing up a kdb+ database can be implemented using any
standard file-system backup utility. This is a key difference from traditional databases,
which have to have their own cumbersome backup utilities and do not allow direct
access to the database files and structure.

Kdb+’s use of the native file system is also reflected in the way it uses standard
operating-system features for accessing data (memory-mapped files), whereas
traditional databases use proprietary techniques in an effort to speed up the reading
and writing processes. The typical kdb+ database layout for time-series data is to
partition by date.

23

Migrating a kdb+ HDB to Amazon EC2 kx

Licensing kdb+ in the Cloud

Existing kdb+ users have a couple of options for supporting their kdb+ licenses in
the Cloud:

Existing license
You can use your existing license entitlement but must transfer or register coverage
in the Cloud service. This would consume the specified number of cores from your
license pool. An enterprise license can be freely used in EC2 instance(s). This might
apply in the situation where the Cloud environment is intended to be a permanent
static instance. Typically, this will be associated with a virtual private cloud (VPC)
service. For example, AWS lets you provision a logically isolated section of the Cloud
where you can launch AWS resources in a virtual network. The virtual network is
controlled by your business, including the choice of IP, subnet, DNS, names, security,
access, etc.

On-demand licensing
You can sign up for an on-demand license, and use it to enable kdb+ on each of the
on-demand EC2 nodes. Kdb+ on-demand usage registers by core and by minutes of
execution.

24

Migrating a kdb+ HDB to Amazon EC2 kx

Encryption

Consider the need for access to any keys used to encrypt and store data. Although this
is not specific to AWS, do not assume you have automatic rights to private keys
employed to encrypt the data.

Where a third-party provider supplies or uses encryption or compression to store the
market data on S3, you will need to check the public and private keys are either made
available to you, or held by some form of external service.

25

Migrating a kdb+ HDB to Amazon EC2 kx

Benchmarking methodology

For testing raw storage performance, we used a lightweight test script developed by
Kx, called nano, based on the script io.q written by Kx’s Chief Customer Officer,
Simon Garland. The scripts used for this benchmarking are freely available for use
and are published here:

KxSystems/nano18

These sets of scripts are designed to focus on the relative performance of distinct I/O
functions typically expected by a HDB. The measurements are taken from the
perspective of the primitive IO operations, namely:

what happenstest

One list (e.g. one column) is read sequentially into memory.
We read the entire space of the list into RAM, and the list
is memory-mapped into the address space of kdb+.

Streaming reads

100 random-region reads of 1 MB of a single column of data
are indexed and fetched into memory. Both single mappings
into memory, and individual map/fetch/unmap sequences.
Mapped reads are triggered by a page fault from the kernel
into mmap’d user space of kdb+. This is
representative of a query that requires to read through 100
large regions of a column of data for one or more dates
(partitions).

Large Random Reads
(one mapped read and
map/unmapped)

1600 random-region reads of 64 KB of a single column of data
are indexed and fetched into memory. Both single mappings
into memory, and individual map/fetch/unmap sequences. Reads
are triggered by a page fault from the kernel into
mmap’d user space of kdb+. We run both
fully-mapped tests and tests with map/unmap sequences for
each read.

Small Random Reads
(mapped/unmapped sequences)

Write rate is of less interest for this testing, but is
reported nonetheless.

Write

Average time for a typical open/seek to end/close loop. Used
by TP log as an
‘append to’
and whenever the
database is being checked. Can be used to append data to an
existing HDB column.

Metadata:
(hclose
hopen)

Append data to a modest list of 128 KB, will
open/stat/seek/write/close. Similar to ticker plant write
down.

Metadata:
(();,;2 3)

18. https://github.com/KxSystems/nano

26

Migrating a kdb+ HDB to Amazon EC2 kx

https://github.com/KxSystems/nano

what happenstest

Assign bytes to a list of 128 KB, stat/seek/write/link.
Similar to initial creation of a column.

Metadata:
(();:;2 3)

Typical open/stat/close sequence on a modest list of 128 KB.
Determine size. e.g. included in read1.

Metadata:
(hcount)

An atomic mapped map/read/unmap sequence
open/stat/seek/read/close sequence. Test on a modest list of
128 KB.

Metadata:
(read1)

This test suite ensures we cover several of the operational tasks undertaken during
an HDB lifecycle.

For example, one broad comparison between direct-attached storage and a
networked/shared file system is that the networked file-system timings might reflect
higher operational overheads vs. a Linux kernel block-based direct file system. Note
that a shared file system will scale up in-line with the implementation of horizontally
distributed compute, which the block file systems will not easily do, if at all. Also note
the networked file system may be able to leverage 100s or 1000s of storage targets,
meaning it can sustain high levels of throughput even for a single reader thread.

Baseline result – using a physical server
All the appendices refer to tests on AWS.

To see how EC2 nodes compare to a physical server, we show the results of running
the same set of benchmarks on a server running natively, bare metal, instead of on a
virtualized server on the Cloud.

For the physical server, we benchmarked a two-socket Broadwell E5-2620 v4 @
2.10 GHz; 128 GB DDR4 2133 MHz. This used one Micron PCIe NVMe drive, with
CentOS 7.3. For the block device settings, we set the device read-ahead settings to
32 KB and the queue depths to 64. It is important to note this is just a reference point
and not a full solution for a typical HDB. This is because the number of target drives
at your disposal here will limited by the number of slots in the server.

Highlights:

Creating a memory list

The MB/sec that can be laid out in a simple list allocation/creation in kdb+. Here we
create a list of longs of approximately half the size of available RAM in the server.

27

Migrating a kdb+ HDB to Amazon EC2 kx

Creating a memory list

Shows the capability of the server when laying out lists in memory; reflects the
combination of memory speeds alongside the CPU.

Re-read from cache

The MB/sec that can be re-read when the data is already held by the kernel buffer
cache (or file-system cache, if kernel buffer not used). It includes the time to map the
pages back into the memory space of kdb+ as we effectively restart the instance here
without flushing the buffer cache or file system cache.

Re-read from cache

Shows if there are any unexpected glitches with the file-system caching subsystem.
This may not affect your product kdb+ code per-se, but may be of interest in your
research.

28

Migrating a kdb+ HDB to Amazon EC2 kx

Streaming reads

Where complex queries demand wide time periods or symbol ranges. An example of
this might be a VWAP trading calculation. These types of queries are most impacted
by the throughput rate i.e., the slower the rate, the higher the query wait time.

Streaming reads

Shows that a single q process can ingest at 1900 MB/sec with data hosted on a single
drive, into kdb+’s memory space, mapped. Theoretical maximum for the device is
approximately 2800 MB/sec and we achieve 2689 MB/sec. Note that with 16 reader
processes, this throughput continues to scale up to the device limit, meaning kdb+
can drive the device harder, as more processes are added.

Random reads

We compare the throughputs for random 1 MB-sized reads. This simulates more
precise data queries spanning smaller periods of time or symbol ranges.

In all random-read benchmarks, the term full map refers to reading pages from the
storage target straight into regions of memory that are pre-mapped.

29

Migrating a kdb+ HDB to Amazon EC2 kx

Random 1 MB read

Random 64 KB reads

Simulates queries that are searching around broadly different times or symbol regions.
This shows that a typical NVMe device under kdb+ trends very well when we are
reading smaller/random regions one or more columns at the same time. This shows
that the device actually gets similar throughput when under high parallel load as
threads increase, meaning more requests are queuing to the device and the latency
per request sustains.

30

Migrating a kdb+ HDB to Amazon EC2 kx

Metadata function response times

We also look at metadata function response times for the file system. In the baseline
results below, you can see what a theoretical lowest figure might be.

We deliberately did not run metadata tests using very large data sets/files, so that they
better represent just the overhead of the file system, the Linux kernel and target device.

latency (mSec)functionlatency (mSec)function

0.01();,;2 30.006hclose hopen

0.022read10.003hcount

Physical server, metadata operational latencies - mSecs (headlines)

Metadata latency

This appears to be sustained for multiple q processes, and on the whole is below the
multiple μSecs range. Kdb+ sustains good metrics.

AWS instance local SSD/NVMe
We separate this specific test from other storage tests, as these devices are contained
within the EC2 instance itself, unlike every other solution reviewed in ‘Appendix A’
. Note that some of the solutions reviewed in the appendixes do actually leverage
instances containing these devices.

An instance-local store provides temporary block-level storage for your instance. This
storage is located on disks that are physically attached to the host computer.

This is available in a few predefined regions (e.g. US-East-1), and for a selected list of
specific instances. In each case, the instance local storage is provisioned for you when

31

Migrating a kdb+ HDB to Amazon EC2 kx

created and started. The size and quantity of drives is preordained and fixed in both
size and quantity. This differs from EBS, where you can select your own.

For this test we selected the i3.8xlarge as the instance under test. i3 instance
definitions will provision local NVMe or SATA SSD drives for local attached storage,
without the need for networked EBS.

Locally provisioned SSD and NVMe are supported by kdb+. The results from these
two represent the highest performance per device available for read rates from any
non-volatile storage in EC2.

However, note that this data is ephemeral. That is, whenever you stop an instance,
EC2 is at liberty to reassign that space to another instance and it will scrub the original
data. When the instance is restarted, the storage will be available but scrubbed. This
is because the instance is physically associated with the drives, and you do not know
where the physical instance will be assigned at start time. The only exception to this
is if the instance crashes or reboots without an operational stop of the instance, then
the same storage will recur on the same instance.

The cost of instance-local SSD is embedded in the fixed price of the instance, so this
pricing model needs to be considered. By contrast, the cost of EBS is fixed per GB per
month, pro-rated. The data held on instance local SSD is not natively sharable. If this
needs to be shared, this will require a shared file-system to be layered on top,
i.e. demoting this node to be a file system server node. For the above reasons, these
storage types have been used by solutions such as ‘WekaIO’ , for their local instance
of the erasure coded data cache.

physical node
(1 NVMe)

instance-local NVMe
(4 × 1.9 TB)

function

26247006streaming read (MB/sec)

27506422random 1-MB read (MB/sec)

11821493random 64-KB read (MB/sec)

0.0068 mSec0.0038 mSecmetadata (hclose,
hopen)

The variation of absolute streaming rates is reflective of the device itself. These results
are equivalent to the results seen on physical servers. What is interesting is that at
high parallelism, the targets work quicker with random reads and for metadata service
times than the physical server. These instances can be deployed as a high-performance
persistent cache for some of the AWS-based file system solutions, such as used in
ObjectiveFS and WekaIO Matrix and Quobyte.

32

Migrating a kdb+ HDB to Amazon EC2 kx

Observations from kdb+ testing

CPU and memory speed
For CPU and memory speed/latencies with kdb+, EC2 compute nodes performance
for CPU/memory mirrors the capability of logically equivalent bare-metal servers. At
time of writing, your main decision here is the selection of system instance. CPUs
range from older generation Intel up to Haswell and Broadwell, and from 1 core up
to 128 vcores (vCPU). Memory ranges from 1 GB up to 1952 GB RAM.

Storage performance
The best storage performance was, as expected, achieved with locally-attached
ephemeral NVMe storage. This matched, or exceeded, EBS as that storage is virtualized
and will have higher latency figures. As data kept on this device cannot be easily
shared, we anticipate this being considered for a super cache for hot data (recent
dates). Data stored here would have to be replicated at some point as this data could
be lost if the instance is shut down by the operator.

Wire speeds
Kdb+ reaches wire speeds on most streaming read tests to networked/shared storage,
under kdb+, and in several cases we can reach wire speeds for random 1-MB reads
using standard mapped reads into standard q abstractions, such as lists.

gp2 vs io1
EBS was tested for both gp2 and its brethren the io1 flash variation. Kdb+ achieved
wire speed bandwidth for both of these. When used for larger capacities, we saw no
significant advantages of io1 for the HDB store use case, so the additional charges
applied there need to be considered.

st1
EBS results for the st1 devices (low cost traditional disk drives, lower cost per GB)
show good (90th-percentile) results for streaming and random 1-MB reads, but, as
expected, significantly slower results for random 64-KB and 1-MB reads, and 4× the
latencies for metadata ops. Consider these as a good candidate for storing longer term,
older HDB data to reduce costs for owned EBS storage.

33

Migrating a kdb+ HDB to Amazon EC2 kx

ObjectiveFS and WekaIO Matrix
ObjectiveFS and WekaIO Matrix are commercial products that offer full operational
functionality for the POSIX interface, when compared to open-source S3 gateway
products. These can be used to store and read your data from/to S3 buckets.

WekaIO Matrix offers an erasure-encoded clustered file-system, which works by
sharing out pieces of the data around each of the members of the Matrix cluster.

ObjectiveFS works between kdb+ and S3 with a per-instance buffer cache plus
distributed eventual consistency. It also allows you to cache files locally in RAM cache
and/or on ephemeral drives within the instance. Caching to locally provisioned drives
is likely to be more attractive vs. caching to another RAM cache.

POSIX file systems
Standalone file systems such as MapR-FS and Quobyte support POSIX fully. Other
distributed file systems designed from the offset to support POSIX should fare equally
well, as to some degree, the networking infrastructure is consistent when measured
within one availability zone or placement group. Although these file system services
are encapsulated in the AWS marketplace as AMI’s, you are obliged to run this estate
alongside your HDB compute estate, as you would own and manage the HDB just the
same as if it were in-house. Although the vendors supply AWS marketplace instances,
you would own and running your own instances required for the file system.

WekaIO and Quobyte
WekaIO and Quobyte use a distributed file-system based on erasure-coding distribution
of data amongst their quorum of nodes in the cluster. This may be appealing to
customers wanting to provision the HDB data alongside the compute nodes. If, for
example, you anticipate using eight or nine nodes in production these nodes could
also be configured to fully own and manage the file system in a reliable way, and
would not mandate the creation of distinct file-system services to be created in other
AWS instances in the VPC.

What might not be immediately apparent is that for this style of product, they will
scavenge at least one core on every participating node in order to run their
erasure-coding algorithm most efficiently. This core will load at 100% CPU.

EFS and AWS Gateway
Avoid EFS21 and AWS Gateway for HDB storage. They both exhibit very high latencies
of operation in addition to the network-bandwidth constraints. They appear to impact
further on the overall performance degradations seen in generic NFS builds in Linux.

21. http://docs.aws.amazon.com/efs/latest/ug/performance.html

34

Migrating a kdb+ HDB to Amazon EC2 kx

http://docs.aws.amazon.com/efs/latest/ug/performance.html

This stems from the latency between a customer-owned S3 bucket (AWS Gateway),
and an availability zone wide distribution of S3 buckets managed privately by AWS.

Open-source products
Although the open source products that front an S3 store (S3FS, S3QL and Goofys)
do offer POSIX, they all fail to offer full POSIX semantics such as symbolic linking,
hard linking and file locking. Although these may not be crucial for your use case, it
needs consideration.

You might also want to avoid these, as performance of them is at best average, partly
because they both employ user-level FUSE code for POSIX support.

35

Migrating a kdb+ HDB to Amazon EC2 kx

Network configuration

The network configuration used in the tests:

The host build was CentOS 7.4, with Kernel 3.10.0-693.el7.x86_64. The ENS module
was installed but not configured. The default instance used in these test reports was
r4.4xlarge.

Total network bandwidth on this model is ‘up-to’ 10 Gbps.

For storage, this is documented by AWS as provisioning up to 3,500 Mbps, equivalent
to 437 MB/sec of EBS bandwidth, per node, bi-directional. We met these discrete
values as seen in most of our individual kdb+ tests.

36

Migrating a kdb+ HDB to Amazon EC2 kx

Appendix A - Elastic Block Store (EBS)

 EBS can be used to store HDB data, and is fully compliant with kdb+.

It supports all of the POSIX semantics required.

Three variants of the Elastic Block Service22 (EBS) are all qualified by kdb+: gp2 and
io1 are both NAND Flash, but offer different price/performance points, and st1 is
comprised of traditional drives. Unlike ephemeral SSD storage, EBS-based storage
can be dynamically provisioned to any other EC2 instance via operator control. So
this is a candidate for on-demand HDB storage. Assign the storage to an instance in
build scripts and then spin them up. (Ref: Amazon EBS)

Amazon EC2 instance

A disadvantage of EBS is that even if the data is read-only (immutable) a specific
volume cannot be simultaneously mounted and shared between two or more EC2
instances. Furthermore, the elastic volume would have to be migrated from one
instance ownership to another, either manually, or with launch scripts. EBS Snapshots
can be used for regenerating an elastic volume to be copied across to other freshly
created EBS volumes, which are subsequently shared around under EBS with a new
instance being deployed on-demand.

22. http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html

37

Migrating a kdb+ HDB to Amazon EC2 kx

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html

Therefore, users of EBS or direct attach containing significant volumes of historical
data, may need to replicate the data to avoid constraining it to just one node. You
could also shard the data manually, perhaps thence accessing nodes attached via a
kdb+ UI gateway.

EBS is carried over the local network within one availability zone. Between availability
zones there would be IP L3 routing protocols involved in moving the data between
zones, and so the latencies would be increased.

EBS may look like a disk, act like a disk, and walk like a disk, but it doesn’t behave
like a disk in the traditional sense.

There are constraints on calculating the throughput gained from EBS:

• There is a max throughput to/from each physical EBS volume. This is set to
500 MB/sec for io1 and 160 MB/sec for gp2. A gp2 volume can range in size from
1 GB to 16 TB. You can use multiple volumes per instance (and we would expect to
see that in place with a HDB).

• There is a further limit to the volume throughput applied, based on its size at creation
time. For example, a GP2 volume provides a baseline rate of IOPs geared up from
the size of the volume and calculated on the basis of 3 IOPs/per GB. For 200 GB of
volume, we get 600 IOPS and @ 1 MB that exceeds the above number in (1), so the
lower value would remain the cap. The burst peak IOPS figure is more meaningful
for random, small reads of kdb+ data.

• For gp2 volumes there is a burst level cap, but this increases as the volume gets
larger. This burst level peaks at 1 TB, and is 3000 IOPS. that would be 384 MB/sec
at 128 KB records, which, again is in excess of the cap of 160 MB/sec.

• There is a maximum network bandwidth per instance. In the case of the unit under
test here we used r4.4xlarge, which constrains the throughput to the instance at
3500 Mbps, or a wire speed of 430 MB/sec, capped. This would be elevated with
larger instances, up to a maximum value of 25 Gbps for a large instance, such as for
r4.16xlarge.

• It is important note that EBS scaled linearly across an entire estate (e.g. parallel
peach queries). There should be no constraints if you are accessing your data, splayed
across different physical across distinct instances. e.g. 10 nodes of r4.4xlarge is
capable of reading 4300 MB/sec.

Kdb+ achieves or meets all of these advertised figures. So the EBS network bandwidth
algorithms become the dominating factor in any final calculations for your
environment.

For consistency in all of these evaluations, we tested with a common baseline using
an r4.4xlarge instance with four 200-GB volumes, each with one xfs file system per
volume, therefore using four mount points (four partitions). To show the scale to

38

Migrating a kdb+ HDB to Amazon EC2 kx

higher throughputs we used an r4.16xlarge instance with more volumes: eight
500-GB targets, (host max bandwidth there of 20 Gbps, compared with max EBS
bandwidth of 1280 MB/sec) and we ran the comparison on gp2 and io1 versions of
EBS storage. For the testing of st1 storage, we used four 6-TB volumes, as each of
these could burst between 240-500 MB/sec. We then compared the delta between two
instance sizes.

EBS-GP2

39

Migrating a kdb+ HDB to Amazon EC2 kx

latency (mSec)functionlatency (mSec)function

0.006();,;2 30.004hclose hopen

0.018read10.002hcount

EBS GP2 metadata operational latencies - mSecs (headlines)

40

Migrating a kdb+ HDB to Amazon EC2 kx

EBS-IO1

41

Migrating a kdb+ HDB to Amazon EC2 kx

latency (mSec)functionlatency (mSec)function

0.006();,;2 30.003hclose hopen

0.017read10.002hcount

EBS-IO1 metadata operational latencies - mSecs (headlines)

EBS-ST1

42

Migrating a kdb+ HDB to Amazon EC2 kx

43

Migrating a kdb+ HDB to Amazon EC2 kx

latency (mSec)functionlatency (mSec)function

0.04();,;2 30.003hclose hopen

0.02read10.002hcount

EBS-ST1 metadata operational latencies - mSecs (headlines)

Summary
Kdb+ matches the expected throughput of EBS for all classifications, with no major
deviations across all classes of read patterns required. EBS-IO1 achieves slightly higher
throughput metrics over GP2, but achieves this at a guaranteed IOPS rate. Its
operational latency is very slightly lower for meta data and random reads. When
considering EBS for kdb+, take the following into consideration:

• Due to private-only presentations of EBS volumes, you may wish to consider EBS
for solutions that shard/segment their HDB data between physical nodes in a
cluster/gateway architecture. Or you may choose to use EBS for locally cached
historical data, with other file-systems backing EBS with full or partial copies of the
entire HDB.

• Fixed bandwidth per node: in our testing cases, the instance throughput limit of
circa 430 MB/sec for r4.4xlarge is easily achieved with these tests. Contrast that
with the increased throughput gained with the larger r4.16xlarge instance. Use
this precept in your calculations.

44

Migrating a kdb+ HDB to Amazon EC2 kx

• There is a fixed throughput per GP2 volume, maxing at 160 MB/ sec. But multiple
volumes will increment that value up until the peak achievable in the instance
definition. Kdb+ achieves that instance peak throughput.

• Server-side kdb+ in-line compression works very well for streaming and random
1-MB read throughputs, whereby the CPU essentially keeps up with the lower level
of compressed data ingest from EBS, and for random reads with many processes,
due to read-ahead and decompression running in-parallel being able to magnify the
input bandwidth, pretty much in line with the compression rate.

• st1 works well at streaming reads, but will suffer from high latencies for any form
of random searching. Due to the lower capacity cost of st1, you may wish to consider
this for data that is considered for streaming reads only, e.g. older data.

45

Migrating a kdb+ HDB to Amazon EC2 kx

Appendix B – EFS (NFS)

EFS is an NFS service owned and run by AWS that offers NFS service for nodes in the
same availability zone, and can run across zones, or can be exposed externally. The
location of where the storage is kept is owned by Amazon and is not made transparent
to the user. The only access to the data is via using the service by name (NFS service),
and there is no block or object access to said data.

Amazon EBS Provisioned IOPSAmazon EFS

Data is stored redundantly in a single
AZ.

Data is stored independently across
multiple AZs.

Availability and
durability

A single Amazon EC2 instance can
connect to a file system.

Up to thousands of Amazon EC2 instances,
from multiple AZs,
can connect concurrently to a file system.

Access

Boot volumes, transactional and
NoSQL databases, data
warehousing, and ETL.

Big data and analytics, media processing
workflows, content
management, web serving, and home
directories.

Use cases

One way to think about EFS is that it is a service deployed in some regions (not all)
of the AWS estate. It does indeed leverage S3 as a persistent storage, but the EFS users
have no visibility of a single instance of the server, as the service itself is ephemeral
and is deployed throughout all availability zones.

This is different from running your own NFS service, whereby you would define and
own the instance by name, and then connect it to an S3 bucket that you also own and
define.

A constraint of EFS for kdb+ is that performance is limited by a predefined burst limit,
which is based on the file-system size:

aggregate read/write throughputfile-system size

• burst to 100 MiB/s for up to 72 min a day
• drive up
to 5 MiB/s continuously

100 GiB

• burst to 100 MiB/s for 12 hours a day
• drive 50 MiB/s
continuously

1 TiB

• burst to 1 GiB/s for 12 hours a day
• drive 500 MiB/s
continuously

10 TiB

46

Migrating a kdb+ HDB to Amazon EC2 kx

aggregate read/write throughputfile-system size

• burst to 100 MiB/s per TiB of storage for 12 hours a
day
• drive 50 MiB/s per TiB of storage continuously

larger

So, the EFS solution offers a single name space for your HDB structure, and this can
be shared around multiple instances including the ability for one or more nodes to be
able to write to the space, which is useful for daily updates. We tested kdb+
performance with a 1-TB file system. Testing was done within the burst limit time
periods.

The EFS burst performance is limited to 72 minutes per day for a 100-GB file system.
Subsequent throughput is limited to 5 MB/sec.

47

Migrating a kdb+ HDB to Amazon EC2 kx

latency (mSec)functionlatency (mSec)function

11.64();,;2 33.658hclose hopen

6.85read13.059hcount

Metadata operational latencies - mSecs (headlines)

Summary
Note the low rate of streaming read performance, combined with very high metadata
latencies (1000× that of EBS). The increase in transfer rate for many-threaded
compressed data indicates that there is a capped bandwidth number having some
influence on the results as well as the operational latency. Consider constraining any
use of EFS to temporary store and not for runtime data access.

48

Migrating a kdb+ HDB to Amazon EC2 kx

Appendix C – Amazon Storage Gateway (File
mode)

Amazon Storage Gateway is a pre-prepared AMI/instance that can be provisioned
on-demand. It allows you to present an NFS layer to the application with S3 as a
backing store. The difference between this and EFS is that the S3 bucket is owned and
named by you. But fundamentally the drawback with this approach will be the
operational latencies. These appear much more significant than the latencies gained
for the EFS solution, and may reflect the communication between the file gateway
instance and a single declared instance of S3. It is likely that the S3 buckets used by
EFS are run in a more distributed fashion.

One advantage of AWS Gateway is that it is managed by AWS, it can be deployed
directly from the AWS console, and incurs no additional fees beyond the normal
storage costs which is in line with S3.

latency (mSec)functionlatency (mSec)function

77.94();,;2 33.892hclose hopen

7.42read10.911hcount

Metadata operational latencies - mSecs (headlines)

Summary
The throughput appears to run at about 50% of the line rates available, even when
run at scale. The AWS gateway exhibits significantly high operational latency. This

49

Migrating a kdb+ HDB to Amazon EC2 kx

manifests as very long wait times when performing an interactive ls -l command
from the root of the file system, while the file system is under load, sometimes taking
several minutes to respond to the directory walk.

50

Migrating a kdb+ HDB to Amazon EC2 kx

Appendix D – MapR-FS

MapR is qualified with kdb+

It offers the full POSIX semantics, including through the NFS interface.

MapR is a commercial implementation of the Apache Hadoop open-source stack.
Solutions such as MapR-FS were originally driven by the need to support Hadoop
clusters alongside high-performance file-system capabilities. In this regard, MapR
improved on the original HDFS implementation found in Hadoop distributions.
MapR-FS is a core component of their stack. MapR AMIs are freely available on the
Amazon marketplace.

We installed version 6.0a1 of MapR, using the cloud formation templates published
in EC2. We used the BYOL licensing model, using an evaluation enterprise license.
We tested just the enterprise version of the NFS service for this test, as we were not
able to test the POSIX fuse client at the time we went to press.

The reasons for considering something like MapR include:

1. Already being familiar with and using MapR in your enterprise, so this may already
be a candidate or use case when considering AWS.

2. You would like to read and write HDB structured data into the same file-system
service as is used to store unstructured data written/read using the HDFS RESTful
APIs. This may offer the ability to consolidate or run Hadoop and kdb+ analytics
independently of each other in your organization while sharing the same
file-system infrastructure.

Locking semantics on files passed muster during testing, although thorough testing
of region or file locking on shared files across multiple hosts was not fully tested for
the purposes of this report.

51

Migrating a kdb+ HDB to Amazon EC2 kx

52

Migrating a kdb+ HDB to Amazon EC2 kx

latency (mSec)functionlatency (mSec)function

6.77();,;2 30.447hclose hopen

0.768read10.484hcount

Metadata operational latencies - mSecs (headlines)

53

Migrating a kdb+ HDB to Amazon EC2 kx

Summary
The operational latency of this solution is significantly lower than seen with EFS and
Storage Gateway, which is good for an underlying NFS protocol, but is beaten by
WekaIO Matrix.

By way of contrast however, this solution scales very well horizontally and vertically
when looking at the accumulated throughput numbers. It also appears to do very well
with random reads, however there we are likely to be hitting server-side caches in a
significant way, so mileage will vary.

We plan to look at the POSIX MapR client in the future.

54

Migrating a kdb+ HDB to Amazon EC2 kx

Appendix E - Goofys

Goofys is an open-source Linux client distribution. It uses an AWS S3 storage backend,
behind a running and a normal Linux AWS EC2 instance. It presents a POSIX file
system layer to kdb+ using the FUSE layer. It is distributed in binary form for
RHEL/CentOS and others, or can be built from source.

Limitations of the POSIX support are that hard links, symlinks and appends are not
supported.

55

Migrating a kdb+ HDB to Amazon EC2 kx

latency (mSec)functionlatency (mSec)function

DNF();,;2 30.468hclose hopen

0.487read10.405hcount

Metadata operational latencies - mSecs (headlines)

Summary
Operational latency is high. The natural streaming throughput seems to hover around
130 MB/sec, or approximately a quarter of the EBS rate. The solution thrashes at 16
processes of streaming reads. Metadata latency figures are in the order of 100-200×
higher that of EBS.

The compressed tests show that the bottleneck is per-thread read speeds, as the data
when decompressed rates improve a lot over the uncompressed model.

56

Migrating a kdb+ HDB to Amazon EC2 kx

Appendix F - S3FS

S3FS is an open-source Linux client software layer that arbitrates between the AWS
S3 storage layer and each AWS EC2 instance. It presents a POSIX file system layer to
kdb+.

S3FS uses the Linux user-land FUSE layer. By default, it uses the POSIX handle mapped
as an S3 object in a one-to-one map. It does not use the kernel cache buffer, nor does
it use its own caching model by default.

Due to S3’s eventual consistency limitations file creation with S3FS can occasionally
fail.

Metadata operations with this FS are slow. The append function, although supported
is not usable in a production setting due to the massive latency involved.

With multiple kdb+ processes reading, the S3FS service effectively stalled.

s3fs

latency (mSec)functionlatency (mSec)function

91.1();,;2 37.57hclose hopen

12.64read110.18hcount

Metadata operational latencies - mSecs (headlines)

57

Migrating a kdb+ HDB to Amazon EC2 kx

Appendix G - S3QL

The code is perhaps the least-referenced open-source S3 gateway package, and from
a vanilla RHEL 7.3 build we had to add a significant number of packages to get to the
utility compiled and installed. S3QL is written in Python. Significant additions are
required to build S3QL namely: llfuse, Python3, Cython, Python-pip, EPEL and SQlite.

S3QL uses the Python bindings (llfuse) to the Linux user-mode kernel FUSE layer.
By default, it uses the POSIX handle mapped as an S3 object in a one-to-one map.
S3QL supports only one node sharing one subset (directory) tree of one S3 bucket.
There is no sharing in this model.

Several code exception/faults were seen in Python subroutines of the mkfs.s3ql utility
during initial test so, due to time pressures, we will revisit this later.

Although the process exceptions are probably due to a build error, and plainly the
product does work, this does highlight that the build process was unusually complex,
due to the nature of so many dependencies on other open-source components. This
may play as a factor in the decision process for selecting solutions.

58

Migrating a kdb+ HDB to Amazon EC2 kx

Appendix H - ObjectiveFS

 ObjectiveFS is qualified with kdb+.

ObjectiveFS is a commercial Linux client/kernel package. It arbitrates between S3
storage (each S3 bucket is presented as a FS) and each AWS EC2 instance running
ObjectiveFS.

It presents a POSIX file system layer to kdb+. This is distinct from the EFS NFS service
from AWS, which is defined independently from the S3 service. With this approach,
you pay storage fees only for the S3 element, alongside a usage fee for ObjectiveFS.

ObjectiveFS contains a pluggable driver, which allows for multithreaded readers to
be implemented in kernel mode. This gives an increase in the concurrency of the
reading of S3 data. ObjectiveFS would be installed on each kdb+ node accessing the
S3 bucket containing the HDB data.

ObjectiveFS is qualified with kdb+. ObjectiveFS achieves significantly better
performance than EFS. It also has significantly better metadata operation latency than
all of the EFS and open source S3 gateway products. ObjectiveFS also scales aggregate
bandwidth as more kdb+ nodes use the same S3 bucket. It scales up close to linearly
for reads, as the number of reader nodes increase, since Amazon automatically
partitions a bucket across service nodes, as needed to support higher request rates.

ObjectiveFS

59

Migrating a kdb+ HDB to Amazon EC2 kx

ObjectiveFS

This shows that the read rates from the S3 buckets scale well when the number of
nodes increases. This is more noticeable than the read rate seen when measuring the
throughput on one node with varying numbers of kdb+ processes. Here it remains
around the 260 MB/sec mark irrespective of the number of kdb+ processes reading.

ObjectiveFS

If you select the use of instance local SSD storage as a cache, this can accelerate reads
of recent data. The instance local cache is written around for writes, as these go direct
to the S3 bucket. But any re-reads of this data would be cached on local disk, local to
that node. In other words, the same data on multiple client nodes of ObjectiveFS
would each be copies of the same data. The cache may be filled and would be expired
in a form of LRU expiry based on the access time of a file. For a single node, the read
rate from disk cache is:

60

Migrating a kdb+ HDB to Amazon EC2 kx

ObjectiveFS

ObjectiveFS

latency (mSec)functionlatency (mSec)function

0.175();,;2 30.162hclose hopen

0.177read10.088hcount

ObjectiveFS metadata operational latencies - mSecs (headlines)

Note that ObjectiveFS encrypts and compresses the S3 objects using its own private
keys plus your project’s public key. This will require a valid license and functioning
software for the length of time you use this solution in a production setting.

Summary
This is a simple and elegant solution for the retention of old data on a slower, lower
cost S3 archive, which can be replicated by AWS, geographically or within availability

61

Migrating a kdb+ HDB to Amazon EC2 kx

zones. It magnifies the generically very low S3 read rates by moving a ‘parallelizing’
logic layer into a kernel driver, and away from the FUSE layer. It then multithreads
the read tasks.

It requires the addition of the ObjectiveFS package on each node running kdb+ and
then the linking of that system to the target S3 bucket. This is a very simple process
to install, and very easy to set up.

For solutions requiring higher throughput and lower latencies, you can consider the
use of their local caching on instances with internal SSD drives, allowing you to reload
and cache, at runtime, the most recent and most latency sensitive data. This cache
can be pre-loaded according to a site-specific recipe, and could cover, for example,
the most recent market data written back to cache, even through originally written
to S3.

Like some of the other solutions tested, ObjectiveFS does not use the kernel block
cache. Instead it uses its own memory cache mechanism. The amount used by it is
defined as a percent of RAM or as a fixed size. This allocation is made dynamically.

Therefore attention should be paid to the cases where a kdb+ writer (e.g. RDB or a
TP write-down) is growing its private heap space dynamically, as this could extend
beyond available space at runtime. Reducing the size of the memory cache for
ObjectiveFS and use of disk cache would mitigate this.

62

Migrating a kdb+ HDB to Amazon EC2 kx

Appendix I – WekaIO Matrix

WekaIO Matrix is qualified with kdb+.

WekaIO Matrix is a commercial product from WekaIO. Matrix uses a VFS driver,
enabling Weka to support POSIX semantics with lockless queues for I/O. The WekaIO
POSIX system has the same runtime semantics as a local Linux file system.

Matrix provides distributed data protection based on a proprietary form of erasure
coding. Files are broken up into chunks and spread across nodes (or EC2 instances)
of the designated Matrix cluster (minimum cluster size is six nodes = four data + two
parity). The data for each chunk of the file is mapped into an erasure-coded
stripe/chunk that is stored on the node’s direct-attached SSD. EC2 instances must
have local SATA or NVMe based SSDs for storage.

With Matrix, we would anticipate kdb+ to be run in one of two ways. Firstly, it can
run on the server nodes of the Matrix cluster, sharing the same namespace and same
compute components. This eliminates the need to create an independent file-system
infrastructure under EC2. Secondly, the kdb+ clients can run on clients of the Matrix
cluster, the client/server protocol elements being included as part of the Matrix
solution, being installed on both server and client nodes.

One nice feature is that WekaIO tiers its namespace with S3, and includes operator
selectable tiering rules, and can be based on age of file and time in cache, and so on.

The performance is at its best when running from the cluster’s erasure-coded SSD
tier, exhibiting good metadata operational latency.

This product, like others using the same design model, does require server and client
nodes to dedicate one or more cores (vCPU) to the file-system function. These dedicated
cores run at 100% of capability on that core. This needs to be catered for in your core
sizing calculations for kdb+, if you are running directly on the cluster.

63

Migrating a kdb+ HDB to Amazon EC2 kx

64

Migrating a kdb+ HDB to Amazon EC2 kx

When forcing the cluster to read from the data expired to S3, we see these results:

65

Migrating a kdb+ HDB to Amazon EC2 kx

latency (mSec)functionlatency (mSec)function

3.5();,;2 30.555hclose hopen

0.078read10.049hcount

WekaIO Matrix metadata operational latencies - mSecs (headlines)

Summary
Streaming reads running in concert across multiple nodes of the cluster achieve
4.6 GB/sec transfer rates, as measured across eight nodes running kdb+, and on one

66

Migrating a kdb+ HDB to Amazon EC2 kx

file system. What is interesting here is to observe there is no decline in scaling rate
between one and eight nodes. This tested cluster had twelve nodes, running within
that a 4+2 data protection across these nodes, each of instance type r3.8xlarge (based
on the older Intel Ivy Bridge chipset), chosen for its modest SSD disks and not for its
latest CPU/mem speeds.

Streaming throughput on one client node is 1029 MB/sec representing wire speed
when considered as a client node. This indicates that the data is injected to the host
running kdb+ from all of the Matrix nodes whilst still constructing sequential data
from the remaining active nodes in the cluster, across the same network.

Metadata operational latency: whilst noticeably worse than EBS, is one or two orders
of magnitude better than EFS and Storage Gateway and all of the open source products.

For the S3 tier, a single kdb+ thread on one node will stream reads at 555 MB/sec.
This rises to 1596 MB/sec across eight nodes, continuing to scale, but not linearly. For
eight processes and eight nodes throughput maximizes at a reasonable 1251 MB/sec.
In a real-world setting, you are likely to see a blended figure improve with hits coming
from the SSDs. The other elements that distinguish this solution from others are
‘block-like’ low operational latencies for some meta-data functions, and good aggregate
throughputs for the small random reads with kdb+.

For setup and installation, a configuration tool guides users through the cluster
configuration, and it is pre-configured to build out a cluster of standard r3- or i3-series
EC2 instances. The tool has options for both standard and expert users. The tool also
provides users with performance and cost information based on the options that have
been chosen.

67

Migrating a kdb+ HDB to Amazon EC2 kx

Appendix J – Quobyte

 Quobyte is functionally qualified with kdb+.

Quobyte offers a shared namespace solution based on either locally-provisioned or
EBS-style storage. It leverages an erasure-coding model around nodes of a Quobyte
cluster.

resulttest

Multiple thread read saturated the ingest bandwidth of each
r4.4xlarge instance running kdb+.

throughput

Test results to follow, please check back at
code.kx.com for full results.

fileops attributes

68

Migrating a kdb+ HDB to Amazon EC2 kx

	Migrating a kdb+ HDB to Amazon EC2
	In-house vs EC2
	Historical data layouts and performance testing
	Data locality
	Getting your data into EC2
	Security of your data and secure access
	Getting your data out of EC2
	Storing your HDB in S3
	Disaster recovery
	Licensing kdb+ in the Cloud
	Encryption
	Benchmarking methodology
	Observations from kdb+ testing
	Network configuration
	Appendix A - Elastic Block Store (EBS)
	Appendix B – EFS (NFS)
	Appendix C – Amazon Storage Gateway (File mode)
	Appendix D – MapR-FS
	Appendix E - Goofys
	Appendix F - S3FS
	Appendix G - S3QL
	Appendix H - ObjectiveFS
	Appendix I – WekaIO Matrix
	Appendix J – Quobyte

