

[xep-support] Line numbering causes fatal error at element 'text' : java.lang.NullPointerException, formatting failed: com.renderx.pdflib.PDFWrongElementException: You are already sending stream data, was Re: Re: CoolTool - Line Numbering version 2

	
This message:
[Message body]
 [More options]

	
Related messages:

[Next message]
[Previous message]
[In reply to]

 [Next in thread]
 [Replies]

From: David Clunie <dclunie_at_ADDRESS_REMOVED>

Date: Fri Sep 07 2018 - 13:00:42 PDT

Hi Kevin

I have been using your line numbering spreadsheet for ages without

a problem, and today it failed on a document for some unfathomable

reason.

Version 4.27.709

Encountered a strange exception that gives little/no guidance

as to the cause of the problem:

"[error] fatal error at element 'text' : java.lang.NullPointerException

error: formatting failed: com.renderx.pdflib.PDFWrongElementException: You are already sending stream data"

while creating PDF from XEP after having made XEP from FO and applying

the linenumberxep.xsl stylesheet:

xep -fo "x.fo" -xep "x.xep"

java -jar saxon9he.jar "-xsl:linenumberxep.xsl" "-s:x.xep" "-o:x_linenumbered.xep"

xep -xep "x_linenumbered.xep" -pdf "x.pdf"

Tried removing one of the (many) tables in the DocBook source and ran

it again and it worked, even though there seems to be nothing obvious

wrong with that table.

If I don't do the line numbering and go straight from FO to PDF, then

the problem does not occur:

xep -fo "x.fo" -pdf "x.pdf"

This is with accessibility turned on, and seems to be the same as

or similar to the error we talked about last time before you added

accessibility support (text element xpath stuff).

If I set <option name="ENABLE_ACCESSIBILITY" value="false"/> in the

xep.xml config it works, but I need accessibility features as discussed

last time.

I have not been able to contrive a smaller example that illustrates

the problem, so I apologize for the large size of the test case.

Good FO:

https://www.dropbox.com/s/lpght6w02sgar1g/cp1850_01_replacingsrtwithsct_good.fo.zip

Bad FO:

https://www.dropbox.com/s/3h8bikn2j16k30x/cp1850_01_replacingsrtwithsct_bad.fo.zip

linenumberxep.xsl:

XEP command used is at:

https://www.dropbox.com/s/6k4ry7qqgfdpku4/xep

XEP config used is at:

https://www.dropbox.com/s/lv3q02w8r7yqy0v/xep.xml

MacOS

java version "1.8.0_181"

Java(TM) SE Runtime Environment (build 1.8.0_181-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.181-b13, mixed mode)

David

On 8/29/14 9:50 AM, David Clunie wrote:

> Thanks Kevin

>

> This seems to work pretty well.

>

> As you pointed out earlier I think, the line numbering in this

> stylesheet is dependent on the (arbitrary) ordering in which

> <xep:text/> elements (with unique y position values) are

> encoded within each <xep:page/>.

>

> The net effect is an occasional out of order line, like the

> heading line, which happen to be written out later in my

> documents.

>

> I have started playing around with trying to identify and sort

> (numerically) the unique y positions within a page, and then

> using the (index) of them as the line number instead ... I will

> let you know how I go with this.

>

> David

>

> On 8/28/14 5:23 PM, Kevin Brown wrote:

>> OK, we had a few inquiries already so I modified the latest CoolTool for

>> line numbering.

>>

>> 1) Accessibility

>>

>> If you had Accessibility turned on and ran the XSL, the resulting XEP file

>> would fail to format by RenderX. This is because the RenderX PDF producer

>> when in Accessibility mode is expecting some Xpath expression on every text

>> element. Accessibility (aka tagged PDF or Section 508 compliant PDF) does

>> many things, one of which is to build a complete Xpath of all parts of a

>> document inside the PDF so it can be navigated and read out loud.

>>

>> So the new XSL below has a param which you would set to enable this in the

>> output. It just copies the Xpath of the element it is on. This is acceptable

>> since I also mark the line number as a "PDF Artifact" which means it would

>> be disregarded by screen readers and such.

>>

>> Note: I implemented this feature before and forgot, we have legislative

>> customers that actually want the line numbers in the content and read out

>> loud using alternative text. Thus, you can get screen readers to read the

>> resulting PDF like this:

>>

>> "Line number 1. The State of California hereby declares"

>> "Line number 2. that the following resolutions shall be regarded"

>> ...

>>

>> 2) Font for line numbers

>>

>> Another person requested the ability to specify the font for the line

>> numbers and not use the font that is on the line in question. The XSL has

>> that changed inserted (you can certainly change or remove if you like).

>>

>> There is a variable at the top in which you can set the font size ("fsize").

>> It takes RenderX units which are 1/100 of a pt. This XSL defaults to 9000 or

>> 9pts. Just like with the color, you would put down the color you want for

>> the text of the line number and now the font, then after you put down the

>> line number you restore the previous color and font.

>> You can certainly remove either or both the color and font.

>>

>> Kevin Brown

>> RenderX

>>

>> **** Changed XSL ****

>>

>> <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

>> xmlns:xep="http://www.renderx.com/XEP/xep"

>> version="2.0">

>> <!--true() for Accessible documents,

>> false() if you are not producing Accessible documents -->

>> <xsl:param name="access" select="true()"/>

>> <xsl:variable name="xpos" select="10000"/>

>> <xsl:variable name="tolerance" select="1000"/>

>> <xsl:variable name="numcolor" select=".2"/>

>> <xsl:variable name="fsize" select="9000"/>

>>

>> <xsl:template match="xep:text">

>> <xsl:variable name="ypos" select="@y"/>

>> <xsl:variable name="test1"

>> select="preceding-sibling::xep:text[not(@y=$ypos)]"/>

>> <xsl:variable name="test2" select="distinct-values($test1/@y)"/>

>> <xsl:variable name="linenum" select="count($test2) + 1"/>

>> <xsl:variable name="numbering"

>> select="string(preceding-sibling::xep:pinpoint[1]/@value)"/>

>> <!-- if the "Y" is unique, put down a linenumber -->

>> <xsl:if test="not(preceding-sibling::xep:text/@y = $ypos) and

>> ($numbering='' or $numbering='numbered')">

>> <xep:gray-color gray="{$numcolor}"/>

>> <xep:font family="Helvetica" weight="400" style="normal"

>> variant="normal" size="{$fsize}"/>

>> <xep:text x="{$xpos}" y="{$ypos}" value="{$linenum}"

>> width="7000">

>> <!-- Add accessibility attribute, mark as Artifact -->

>> <xsl:if test="$access">

>> <xsl:attribute name="xpath">

>> <xsl:value-of select="@xpath"/>

>> </xsl:attribute>

>> <xsl:attribute name="pdf-structure-tag">

>> <xsl:text>Artifact</xsl:text>

>> </xsl:attribute>

>> </xsl:if>

>> </xep:text>

>> <xsl:copy-of select="preceding-sibling::*[contains(name(),

>> 'font')]"/>

>> <xsl:copy-of select="preceding-sibling::*[contains(name(),

>> 'color')]"/>

>>

>> </xsl:if>

>> <xsl:copy-of select="."/>

>> </xsl:template>

>> <xsl:template match="@*|node()">

>> <xsl:copy>

>> <xsl:apply-templates select="@*|node()"/>

>> </xsl:copy>

>> </xsl:template>

>>

>> </xsl:stylesheet>

>>

>>

>>

>> -----Original Message-----

>> From: Kevin Brown [mailto:kevin@renderx.com]

>> Sent: Wednesday, August 27, 2014 11:30 AM

>> To: kevin@renderx.com; 'RenderX Community Support List'

>> Subject: RE: [xep-support] CoolTool - Line Numbering

>>

>> And attached is a sample output. As you can see at the very end, the issue

>> would exist with the last row of the table where it numbers 29-27-28. This

>> is because the last cell in that row is done first (yielding 27 and 28) then

>> the next cell with "higher" content is encountered (29). You would have this

>> limitation if you bottom align things and they vary in height.

>>

>> Note: This also shows that the font-size of the number picks up from the

>> content encountered. You could certainly modify that behavior also in the

>> style sheet and use a fixed font size. You would need to implement this just

>> like the color, getting the previous value and outputting that back after

>> you put down the line number.

>>

>> Kevin

>>

>> -----Original Message-----

>> From: Xep-support [mailto:xep-support-bounces@renderx.com] On Behalf Of

>> Kevin Brown

>> Sent: Wednesday, August 27, 2014 11:18 AM

>> To: 'RenderX Community Support List'

>> Subject: [xep-support] CoolTool - Line Numbering

>>

>> As I posted before, RenderX has an extension called "rx:ruler" that can be

>> used to lay down numbers on a page. This is not a true "line numberer", it

>> is a measuring stick. It was created for a very specific application

>> (legislation) and met the requirements of the customer. It was included into

>> XEP then and never documented, but it is there for all to use.

>>

>> On another project, I developed an identity XSL that can be applied to the

>> RenderX Intermediate Format (XEPOUT) to understand lines of text and create

>> a numbering system. In XEPOUT, all text is represented by the <xep:text>

>> element. An <xep:text> element will also carry information on its position

>> (i.e. the "y" position on the page). A very simple 2.0 XSL can be used to go

>> through the document and inject line numbers at a specified location when an

>> <xep:text> element whose "y" is different from than last one. It is

>> important to have the "y" is different because you may have phrases on the

>> same line in different <xep:text> elements especially in the case of

>> kerning.

>>

>> There are a few limitations in this method, specifically in the area of

>> tables. Tables in XEP rendered into XEPOUT do not necessarily follow

>> document order. You could design a table cell with say the cell contents

>> aligned to the bottom and have differing numbers of lines of text in the

>> cell. XEP outputs tables right to left, top to bottom and something like

>> this would get numbered incorrectly (the "Col" in "Col 3" would come before

>> the "Big" in "Big Col 2" in the XEPOUT.

>>

>> Big

>> Col Col Col

>> 1 2 3

>>

>> The variable "xpos" is the X position where you want to line numbers.

>> I also had added a tolerance variable but did not have to implement it. You

>> certainly could do so. You would likely need it if you have

>> superscript/subscript.

>> The variable "numcolor" is a gray color value, you could of course do

>> something different.

>>

>> This solution also makes use of adding <xep:pinpoint> elements into the

>> document to mark areas where you do not want to number. I used this for

>> excluding header/footer areas. One would do something like this in the

>> static-content areas. The pinpoints will be dropped into the XEPOUT to mark

>> the area where you do not want numbers,

>>

>> <fo:static-content flow-name="xsl-region-before">

>> <fo:block><rx:pinpoint value="notnumbered"/></fo:block>

>> <fo:list-block font="10pt Helvetica"

>> provisional-distance-between-starts="5in"

>> provisional-label-separation="0in">

>> <fo:list-item>

>> <fo:list-item-label end-indent="label-end()">

>> <fo:block text-align="start" font-weight="bold"> Block

>> Properties - Borders </fo:block>

>> </fo:list-item-label>

>> <fo:list-item-body start-indent="body-start()">

>> <fo:block text-align="end">

>> Page <fo:page-number/>

>> </fo:block>

>> </fo:list-item-body>

>> </fo:list-item>

>> </fo:list-block>

>> <fo:block><rx:pinpoint value="numbered"/></fo:block>

>> </fo:static-content>

>>

>>

>> Anyway, here is the sample XSL free for all to use and modify. If you find

>> it useful, great. Make any modifications and please post it back for all.

>>

>> <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

>> xmlns:xep="http://www.renderx.com/XEP/xep"

>> version="2.0">

>> <xsl:variable name="xpos" select="10000"/>

>> <xsl:variable name="tolerance" select="1000"/>

>> <xsl:variable name="numcolor" select=".2"/>

>>

>> <xsl:template match="xep:text">

>> <xsl:variable name="ypos" select="@y"/>

>> <xsl:variable name="test1"

>> select="preceding-sibling::xep:text[not(@y=$ypos)]"/>

>> <xsl:variable name="test2" select="distinct-values($test1/@y)"/>

>> <xsl:variable name="linenum" select="count($test2) + 1"/>

>> <xsl:variable name="numbering"

>> select="string(preceding-sibling::xep:pinpoint[1]/@value)"/>

>> <!-- if the "Y" is unique, put down a linenumber -->

>> <xsl:if test="not(preceding-sibling::xep:text/@y = $ypos) and

>> ($numbering='' or $numbering='numbered')">

>> <xep:gray-color gray="{$numcolor}"/>

>> <xep:text x="{$xpos}" y="{$ypos}" value="{$linenum}"

>> width="7000"/>

>> <xsl:copy-of select="preceding-sibling::*[contains(name(),

>> 'color')]"/>

>> </xsl:if>

>> <xsl:copy-of select="."/>

>> </xsl:template>

>> <xsl:template match="@*|node()">

>> <xsl:copy>

>> <xsl:apply-templates select="@*|node()"/>

>> </xsl:copy>

>> </xsl:template>

>>

>> </xsl:stylesheet>

>>

>> ___

>> (*) To unsubscribe, please visit

>> http://lists.renderx.com/mailman/options/xep-support

>> (*) By using the Service, you expressly agree to these Terms of Service

>> http://w ww.renderx.com/terms-of-service.html

>>

>>

>>

>

> !DSPAM:87,5400855b10101257617235!

>

>

> ___

> (*) To unsubscribe, please visit http://lists.renderx.com/mailman/options/xep-support

> (*) By using the Service, you expressly agree to these Terms of Service http://w

> ww.renderx.com/terms-of-service.html

>

>

___(*) To unsubscribe, please visit http://lists.renderx.com/mailman/options/xep-support(*) By using the Service, you expressly agree to these Terms of Service http://www.renderx.com/terms-of-service.html

Received on Fri Sep 7 13:00:59 2018

	This message: [Message body]
	Next message: Kevin Brown: "[xep-support] Re: Line numbering causes fatal error at element 'text' : java.lang.NullPointerException, formatting failed: com.renderx.pdflib.PDFWrongElementException: You are already sending stream data, was Re: Re: CoolTool - Line Numbering version 2"
	Previous message: François Yergeau: "[xep-support] Re: Problem with images embedded in Postscript docs"
	In reply to: David Clunie: "[xep-support] Re: CoolTool - Line Numbering version 2"
	Next in thread: Kevin Brown: "[xep-support] Re: Line numbering causes fatal error at element 'text' : java.lang.NullPointerException, formatting failed: com.renderx.pdflib.PDFWrongElementException: You are already sending stream data, was Re: Re: CoolTool - Line Numbering version 2"
	Reply: Kevin Brown: "[xep-support] Re: Line numbering causes fatal error at element 'text' : java.lang.NullPointerException, formatting failed: com.renderx.pdflib.PDFWrongElementException: You are already sending stream data, was Re: Re: CoolTool - Line Numbering version 2"
	Reply: Kevin Brown: "[xep-support] Re: Line numbering causes fatal error at element 'text' : java.lang.NullPointerException, formatting failed: com.renderx.pdflib.PDFWrongElementException: You are already sending stream data, was Re: Re: CoolTool - Line Numbering version 2"
	Reply: Kevin Brown: "[xep-support] Re: Line numbering causes fatal error at element 'text' : java.lang.NullPointerException, formatting failed: com.renderx.pdflib.PDFWrongElementException: You are already sending stream data, was Re: Re: CoolTool - Line Numbering version 2"

	Contemporary messages sorted: [By Date] [By Thread] [By Subject] [By Author] [By messages with attachments]

This archive was generated by hypermail 2.1.8
: Fri Sep 07 2018 - 13:01:11 PDT

