Think free. Learn free.

navigation

Main Page

Help

Wikijunior

Wikistudy
Wikiversity
Wikiprofessional
Books by subject
Books alphabetically
Books near
completion

toolbox

What links here
Related changes
Upload file
Special pages
Printable version
Permanent link
Cite this article

- A
(V) wikiMEDIA
project

a Sign in / create account

module discussion edit this page history

Your continued donations keep Wikipedia running!

Programming: Common Lisp/Tutorial

From Wikibooks, the open-content textbooks collection

http://en.wikibooks.org/wiki/Programming:Common_Lisp/Tutorial
[edit]

Basic Stuff

This chapter gives some theoretical basics about structure of Lisp programs. You need to read it to
understand the code.

[edit]
Syntax

Lisp operates on forms. Each Lisp form is either an atom or a list of forms. Atoms are numbers, strings,
symbols and some other structures. Lisp symbols are actually quite interesting - I'll talk about them in
another section.

When Lisp is forced to evaluate the form it looks whether it's an atom or a list. If it's an atom then its
value is returned (numbers, strings and other data return themselves, symbols return their value). If
the form is a list Lisp looks at the first element of the list - its car (yep, some Lisp terminology is quite
strange and dates back into the olden times). The car of that list should be a symbol or a
lambda-expression (lambda-expressions would be discussed later). If it's a symbol Lisp takes its
function (the function associated to that symbol - NOT its value) and executes that function with the
arguments taken from the rest of the list (if it contains forms they're evaluated as well).

Example: (+ 1 2 3) returns 6. Symbol "+" is associated with the function + that performs the addition
of its arguments. (+ 1 (+ 2 3) 4) returns 10. The second argument contains a form and is evaluated
before being passed to the outer +.

[edit]
Some interesting functions
+, -, *, / are basic operations on numbers. They can accept multiple arguments. Note that (/ 1 2) is 1/2,

not 0.5 - Lisp knows rational numbers (as well as complex ones...). <, <=, = and so on are used for
number comparison. Note that =, <, <= and others are polyadic :

777

,,,

list as the name suggests creates a list.

This page was last modified 06:56, 14 June 2006. [11 Mogiawii

All text is available under the terms of the GNU Free Documentation License (See Copyrights for details).

Wikipedia is a registered trademark of the Wikimedia Foundation, Inc.

Privacy policy About Wikipedia Disclaimers

Programming: Common Lisp/Tutorial

cons creates a pair (pair is NOT the list of 2
elements).

car or first return the first element of the cons (pair).
cdr or rest return the second element of the cons.

ar (cons 1 2)) => 1 (cdr (cons i
2)) => 2 1

Lists and conses

Since lists are so prominent in Lisp it's good to know
what they exactly are. The truth is: lists consist of
conses. Except one special list called nil aka (). nil is
a self-evaluating symbol that is used both as a
falsehood constant and an empty list. nil is the only
false value in Lisp - everything else is true for the
purpose of if and similar constructs. The opposite of
nil is t, which is also self-evaluating and represents
the truth. t is however not a list. Let's return to the
lists then... The definition of a proper list (1 won't
explain improper lists in this document) is that it's
either nil or a cons whose cdr is a proper list. (Note
that since proper lists have to start from somewhere,
(cdr (cdr (cdr... (cdr x)))...) is nil for some finite
number of cdrs.)

So (123)isreally (1. (2. (3. nil))). What follows
from that is that (car (list 1 2 3)) is 1 and (cdr (list 1 2
3)) is (2 3). What doesn't follow from that is that (car
nil) and (cdr nil) are nil.

[edit]
Symbols

Symbols play the same role as variable names in
other programming languages. Basically a symbol is
a string associated with some values. The string can
consist of any characters, including spaces and
control characters. However you probably wouldn't
use symbols with weird names because they're
awkward to type. By default Lisp converts what you
type to uppercase, so in some sense it's a
case-insensitive language.

As was said you can use almost any characters for
your Symbols_ Avoid using " ll’ llllll’ ll(ll, Il)ll, ll#ll’ ll\ll, ll.ll’
"|" and ";" because the Lisp reader is likely to
misunderstand you at the sight of them.

Symbols are created as you use them. For example
when you type (setf x 1) symbol called "X" is created
(remember that Lisp uppercases your input) and its
value is set to 1. However it's a good style to define
your symbols before you use them. defvar and
defparameter are used for that purpose.

(defparameter x 1) ;;defines symbol "X" and sets its
value to 1.

Symbols also have other stuff associated with them
- functions, classes and so on. To get a function

associated with a symbol, a special operator (these
are discussed in the next chapter) function is used.

[edit]
Other things besides functions

There are some things in Lisp that look like functions
but behave slightly different. These are macros and
special operators. The difference from the functions
is that the arguments are not always evaluated and
that makes the things much more interesting.

The first special operator is quote. It returns its only
argument, unevaluated . This is impossible with
functions as they always evaluate their argument.
Quote is used quite often so it has a shortcut .
(quote x) is equivalent to 'x. quote may be used to
quickly conjure up lists: '(1 2 3) returns (1 2 3), '(x y
z) returns (X'Y Z) - compare that to (list x y z) which
would create a list of values of x, y and z, or signal
an error if no values were assigned. In fact, '(x y z) is
the same value as (list 'x 'y 'z).

You can also notice that such construct as if cannot
be implemented as a function because only one of its
arguments should be evaluated and not the other. In
Lisp if is a special operator, which takes three (or
less) arguments: the first one is always evaluated: if
it is not nil, second argument is evaluated, if it is nil,
third argument is evaluated. For example (if t 1 2)
returns 1 and (if nil 1 2) returns 2.

Macros are like special operators except they're not
hardcoded in Lisp implementation but are defined in
Lisp code. A lot of Lisp constructs you will be using
are actually macros. Only very essential stuff is
hardcoded. Of course, to the user there is no
difference.

[edit]

http://en.wikibooks.org/wiki/Programming:Common_Lisp/Tutorial page 2

Programming: Common Lisp/Tutorial

Doing things

In this chapter I'll explain how to do simple things in
Lisp. Most of the useful constructs would be
introduced. After reading this chapter you should be
able to write simple programs.

[edit]
Storing values

While storing values in variables is an important thing
in many programming languages, in Lisp it is used
much less often. As you may have noticed | never
stored values anywhere in the previous chapter...
except in that "Symbols" section. That's because
symbols are for storing values. Macro setf stores a
value into a symbol:

setf x 1) => 1

Maybe it's quite awkward compared to C's x=1; but
you'll be using setf less often than in C. That's
because there is another way in Lisp to remembering
values: binding them.

[edit]
Binding values

With let and let* you can bind some values to some
variables within some part of your program.

777

| (let ((x 1) (v 2) (z3)) (+ xy 2)) |
I => 6 i
| (let* ((x 1) (y (+ x 1)) (z (+y !
1)) (+xyz) =6 |

,,,

Inside the body of let you can use variables you
defined as though they're real symboils - outside of let
these symbols can be unbound or have completely
different values. If you call or define functions within
the let body the bindings stick around, thus some
interesting interactions are made possible (which are
outside of the scope of this manual). You can even
use setf on these variables and the new value would
be stored temporarily. As soon as the last form in let
body is executed its result is returned, and the
variables are restored back to their original values.
The difference between let and let* is that let
initialises its variables in parallel and let* does it
sequentially.

In general you should prefer binding over setfing just
because most Lisp programmers do.

[edit]
Control flow

The if operator was already explained before, but you
probably are not able to use it at this point. This is
because if allows only one form for each branch,
which makes it hard to use in most situations.
Fortunately while C has curly braces and Pascal has
begin/end, Lisp gives you more freedom to define
your blocks. progn creates a very simple block of
code, executing its arguments one by one and
returning the result of the last one. let and let* can
also be used for that purpose especially if you want
some temporary variables inside the branches. block
creates a named block, from which you can return
with return-from:
(block aaa

(return—-from aaa 1)

(+ 1 2 3)) =1 ;;The form (+ 1
2 3) 1is not evaluated.

,,,

...and there are also the, locally, prog1, tagbody
and so on. Fortunately, if you're not into writing Lisp
macros, if is probably the only construct where you'l
have to use blocks.

As if is quite ugly there are some convenient macros
in place so you won't have to use it all that often.
when takes its first argument and if it's not nil it
evaluates the rest of its arguments, returning the last
result. unless does the same if its first argument is
nil. Otherwise they both return nil.

cond is slightly more complicated. It tests the
conditions until one of them is not nil and then
evaluates the associated code. The syntax of cond
is as follows:
| (cond (conditionl some-formsl) l
i (condition?2 some-forms2) i
} ..and so on...) }

case is similar to cond except it branches after
examining the value of some expression:

(case expression
(valuesl some—-formsl) ;values is
either one value

http://en.wikibooks.org/wiki/Programming:Common_Lisp/Tutorial page 3

Programming: Common Lisp/Tutorial

(values2 some—-forms2) ;or a list
of values.

(t some—-forms-t)) ;executed if no
values match

or evaluates its arguments until one of them is not nil,
returning its value, or the value of last argument.

and evaluates its arguments until one of them is nil,
returning its value (nil, that is) - otherwise the value
of the last argument is returned.

You may notice that or and and could be used as
logical operations as well - remember that everything
non-nil is true.

[edit]
Loops

As in every area of Lisp programming there are
plenty of tools for evaluating something many times.
The most useful tool is loop - in its simplest form it
simply executes its body until the return operator is
called, in which case it returns the specified value:

More complicated forms of loop are better learned
through examples. While loop should be enough for
all kind of loops, there are other constructs for those
who don't bother to learn its full syntax.

dotimes executes some code a fixed number of
times. Its syntax is:

(dotimes (var number result)
forms)

dotimes increments var from 0 to number-1 and
executes forms that number of times, returning result
in the end.

dolist iterates through a list: its syntax is the same
as of dotimes except there is a list instead of
number.

mapcar applies a function to different sets of
arguments and returns a list of results, for example:

(mapcar #'+ '(1 2 3) '(3 4 5) '(6
7 8)) => (10 13 106)

#'+ is a shortcut for (function +). The function + is first
applied to the list of arguments (1 3 6), then to (2 4
7) and then to (3 5 8).

[edit]
Defining functions

Functions are defined using macro defun:

|
(defun function-name (arguments) ;
body) |

|

The created function is associated with the symbol
function-name and can be called like any other
function. It's worth mentioning that functions defined
that way can be recursive or can call each other.

The special operator lambda creates an anonymous
function, which you can use for a one-time purpose.
Its syntax is the same except instead of "defun
function-name” you write "lambda". These functions
cannot be recursive.

You can also bind functions temporarily with flet and
labels. They are very similar to let and let*. The
difference between them is that in labels a function
can refer to itself, while in flet it refers to a former
function with the same name instead.

[edit]
Calling functions

To call a function f with arguments a1, a2 and a3
simply type

Sometimes the function which should be called is
stored in a variable and you don't know its name
beforehand. Or maybe you don't know how many
arguments are to be passed. In those cases functions
funcall and apply become handy. Like all functions
they evaluate their arguments - the first one should
produce a function to be called, the rest should
produce arguments. funcall just calls the function
with whatever arguments supplied and apply checks
if its last argument is a list and if it is, it treats it as a
list of arguments. Compare:

http://en.wikibooks.org/wiki/Programming:Common_Lisp/Tutorial page 4

Programming: Common Lisp/Tutorial

777

(funcall #'list '(1 2) '(3 4)) =>
((1 2) (3 4))

(apply #'list '(1 2) '(3 4)) => ((1
2) 3 4)

,,,

User interaction

For this tutorial | cover only simple tasks of input and
output. To read a value from the user use the read
function. It will attempt to read an arbitrary Lisp
expression from the input, and the value returned by
read is that expression.

(read) ;Run read function

+ 1 x) ;That's what the user

,,,

In that example the returned value is a list of three
elements: symbol +, number 1 and symbol X (note
how it got uppercased). read is one of the three
functions that comprise read-eval-print loop, the
core element of Lisp. This is the same function that
is used to read the expressions you type at the Lisp
prompt.

While read is handy for receiving numbers and lists
from the user, other data-types are expected by most
users to be fed to computer in a different manner.
Take strings for example. To make read recognise a
string one must add double quotes around it "1ike
this™". But normal user expects to just type 1ike
this without the quotes and press Enter. So, there
is a different general-purpose function used for input:
read-line. read-line returns a string that contains
what user typed before pressing Enter. You can then
process that string to extract the information you
need.

For output there is also quite a number of functions
available. One that is interesting to us is prine, which
simply prints a supplied value, and also returns it.
This may be confusing when using it in the Lisp
console:

The first aaa (without the quotes) is what is printed,
the second one is a returned value (which is printed
by print function and it is not as nice looking).
Another function that could be useful is newline,
which prints a new line to the output.

http://en.wikibooks.org/wiki/Programming:Common_Lisp/Tutorial page 5

	Basic Stuff
	Syntax
	Some interesting functions
	Lists and conses
	Symbols
	Other things besides functions

	Doing things
	Storing values
	Binding values
	Control flow
	Loops
	Defining functions
	Calling functions
	User interaction

